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Abstract. The size selection of nanodots during the growth is studied by using a reaction kinetic model,
where reaction rates depend on the dot size. The characteristic feature of the reaction rates is the energetics,
where the free energy of dots has a minimum at the certain dot size. The model equations are solved by
using a particle coalescence simulation method. We find phenomenologically three distinct stages of growth.
First, during the initial deposition stage, distributions with high density of small dots occur. Second, there
is an intermediate and short-lived stationary state, which is controlled by kinetics of growth. Third, a
long-lived stationary state is obtained, with nearly Gaussian size distributions, mostly determined by the
energetics of the growth but also significantly affected by the kinetics. In the final stage, size selection and
narrowing of the distributions occur. It is also shown that in the final stage of growth the Fokker-Planck
type continuum model describes well the evolution of the distributions and the size selection.

PACS. 81.07.Ta Quantum dots – 68.65.Hb Quantum dots – 68.35.Md Surface thermodynamics, surface
energies – 81.16.Dn Self-assembly

1 Introduction

In growth of nanosized clusters and dots on surfaces there
are interesting cases, where size-selection of dots take
place [1–6]. The size-selected growth has given promises
to realize in practical situations the self-assembled pro-
duction of regular sized arrays of nanodots [7,8]. The
spontaneous size-selection is known to occur in 2D-growth
of nanodots, when growth proceeds in the Stranski-
Krastanov mode with a wetting layer [5], and also in
the 3D-growth of nanoclusters proceeding in the Volmer-
Weber mode, characterized by immediate cluster forma-
tion [3,4,6]. In most cases size selection is observed in
heteroepitaxy of semiconductor nanodots, but also in het-
eroepitaxy of metallic dots [5,6,9–11].

The physical origin of size-selection is often ascribed
to the thermodynamics of growth and the existence of en-
ergy minimum for the dot formation energy per atom. In
2D heteroepitaxial growth the existence of such minimum
can be related to the elastic relaxation energy due to misfit
strain [12–14] and in 3D growth to the surface energy and
on its dependence on the morphology of the clusters [6,15].
In the case of thermodynamically driven growth the equi-
librium distribution is the Gibbs-Boltzmann distribution
corresponding the thermodynamically stable state, and

a e-mail: kirsi.nevalainen@gmail.com

the optimum size is determined by the minimum of the
formation energy [2,16].

Another possibility is to attribute the size selection to
the reaction kinetics, where basic atomistic processes of
growth, the attachment and detachment to cluster edges,
are all processes depending on the size of the nanoclus-
ters [12,13,17,18]. In both cases, however, the size selec-
tion is connected to the minimum of total energy of the
growing structures with respect to their size. The major
difference of the views based on thermodynamic and ki-
netic descriptions is on the role of growth kinetics deter-
mining the form of the stationary distribution. The ther-
modynamic description relates the size selection to the
stable Gibbs-Boltzmann distribution, whereas the kinetic
description relates it to the long-lived, metastable distri-
bution which results from the interplay between energetics
and the kinetics of growth. The optimum size in kinetic
description is no more simply related to the minimum of
the formation energy [12–14,17,18].

The kinetically determined metastable state and
size selection has been studied in several previous
works. The kinetically determined size selection has been
demonstrated in simulations [5,12,13], in closely re-
lated phenomenological continuum models [14], and in
fully kinetic descriptions in terms of reaction rates of
adatom attachment and detachment processes [17,18].
Moreover, the transition from kinetically controlled to
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thermodynamically driven growth can be seen in cases,
where the effects of size dependent energetics are taken
into account directly through the microscopic rates gov-
erning the growth [12,13]. In summary, the results of the
studies, which are explicitly based on microscopic descrip-
tions, support the view that the size selection is a generic
feature of growth. Size selection is related to the existence
of long lived metastable state, where evolution of the dis-
tribution is affected by both the energetics and kinetics of
the growth [12–14]. In such cases, the selected size may
significantly exceed the size corresponding to the energy
minimum [14].

The size selection of nanodots occurring due to com-
bined effects of energetics and kinetics of growth has re-
cently been discussed in terms of Fokker-Planck model.
The advantage of such description is that it makes a di-
rect connection to kinetic models of growth, and it is pos-
sible to obtain the Fokker-Planck model from the underly-
ing reaction kinetic Becker-Döring model [14]. The results
based on the Fokker-Planck model show that the time evo-
lution of the size distribution for size selected nanodots
is Gaussian-shaped, and the system evolves steadily to-
wards the long-lived metastable state. Already before the
metastable state is reached, the width of the size distribu-
tion begins to diminish, and in the stationary state it is at
its narrowest. The possibility to obtain the time evolution
of the size distribution in terms of Gaussian distribution is
somewhat unexpected, because the cluster growth even in
simple reversible cases usually leads to more complicated
distributions of scaling form.

In this work, we examine the size selected growth of
nanodots by using a reaction kinetic model (RKM) with
self-consistent reaction rates for size dependent attach-
ment and detachment processes. The energetics of the
adatom process is described through the free energy differ-
ence of the growing dots. In continuum limit, this quantity
is equal to the chemical potential. The growth as governed
by the RKM is then simulated numerically by using the
particle coalescence method (PCM), which we have pre-
viously developed [19] for similar reaction kinetic growth
problems. This approach allows us to study in detail the
evolution of the size distribution function in all stages of
the growth. The results show that there are three char-
acteristic stages, namely (1) the initial stage, with high
density of small dots (singular distribution); (2) interme-
diate stage of short-lived stationary state corresponding
the minimum of the detachment rate, strongly ordinated
by growth kinetics; and (3) final long-lived stationary state
mostly dictated by the energetics of the growth, but still
displaying a significant overshooting effect due to the ki-
netics.

2 The reaction kinetic model of size selected
growth

The nanodot growth is described by the reaction kinetic
model (RKM), which includes only adatom attachment
and detachment processes A1 + As ↔ A1+s with dots of

size s. The reaction rates for attachment and detachment
σs and γs, respectively, are specified later. This model
simplifies the real growth problem by ignoring all spatial
correlations between the dots, only the average effect of
dot density is taken into account through the energetics
of the growth. The rate equations (RE) for adatom and
dot densities n1 and ns corresponding the RKM are

dn1

dt
= Φ − 2σ1n

2
1 − n1

∑

s≥2

σsns + 2κγ2n2 +
∑

s≥2

κγsns;

dns

dt
= σs−1ns−1n1 − σsnsn1 + κγs+1ns+1 − κγsns, (1)

where t is time, Φ is the deposition flux of adatoms in
monolayers (ML) per second, θ = Φt is the coverage in
MLs. The parameter κ defines the total rate κ

∑
γsns of

detachment events (per site). We are mostly interested in
the region, where the adatom density becomes stationary
and dn1/dt = 0. Then size distributions are of shape pre-
serving form and become also independent of parameter κ
and adatom density n1. From equation (1) it is seen that
this condition is fulfilled when n1 → κ. Moreover, then
the total rate of detachment events becomes equal to total
rate n1

∑
σsns of attachment events. In this limit, clas-

sical Becker-Döring description of the growth is obtained
(Appendix B). However, the prediction of the time needed
to obtain the full stationarity of growth with n1 = κ is dif-
ficult to estimate and therefore in what follows we use the
full RE description.

2.1 The reaction rates

In systems, where size selection takes place, the reac-
tion rates have energy barriers depending on the dot size.
There are several possibilities for the physical origin of the
dot size dependent energetics, but the essential feature of
the energetics is the existence of the minimum value for
energy difference ∆s = Es+1 − Es, where Es is the total
free energy of dot of size s. The form to be used for the
free energy difference ∆s is specified later. The transition
rates σs and γs can be then defined in terms of the effec-
tive energy barriers ∆s, with an additional requirement
that for reversible processes A1 +As ↔ A1+s the reaction
rates for attachment and detachment need to fulfill the
condition of detailed balance

γs+1

σs
= eβ∆s . (2)

However, apart from the requirement of detailed balance
there are more freedom how to define the rates. In dif-
ferent models of nucleation and growth the free energy
for transition is divided differently between the effective
barriers for attachment and detachment. For example, in
the widely used Turnbull-Fisher model and Kelton-Greer
model based on it, the free energy is divided symmetri-
cally [20,21], but in some models the free energy is taken
into account either in the attachment or detachment bar-
rier only (see Ref. [22]).
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In the present case, the most obvious choice for
defining the detachment and attachment barriers is to
follow the self consistent scheme introduced by Bales
and Zangwill [23], which leads to reaction rates (see
Appendix A),

σs = sq/(1 + eβ∆s)

γs = sq/(1 + e−β∆s−1). (3)

where β = 1/kBT is the inverse temperature. In these
reaction rates, the prefactor sq takes into account the ge-
ometric size dependence of the reaction rates, simply re-
lated to the length of the dot boundary. The parameter
q is thus related to the morphology of the growing dots,
and because we are mostly concerned with 2D compact
dots q = 1/2 is an appropriate choice. However, because
of size dependence of prefectors of reaction rates, some 2D
cases may be better described with values ranging from
1/4 < q < 2/3. The reaction rates in equation (3) ful-
fill the condition of detailed balance, and in the limit of
large barriers and low temperatures where −β∆s � 1 the
rates in equation (3) agree with rates in Turnbull-Fisher
and Kelton-Greer models [20,21]. The self-consistent de-
tachment rates at three different temperatures are shown
in Figure 1. The current choice of barriers gives very low
attachment rates at small dot sizes. There is a critical size
of dots, corresponding to the saddle point of detachment
rates seen in Figure 1, which needs to be overcome be-
fore growth proceeds rapidly. In practice, in the region
of sizes smaller than the critical size, deposition defines
the timescale needed to reach the critical size. In order to
speed up the evolution in this region we approximate the
attachment rate with a simple power-law form σs → sq.
This approximation agrees with the self-consistent rates
in region of dot sizes exceeding the critical size, but sim-
plifies the description in the region of attachment limited
growth at sizes smaller than the critical size. Therefore,
in our model the initial stage of growth is essentially the
reversible growth process governed by power-law type re-
action rates.

2.2 Energetics of growth

The energetics of the model is defined through the to-
tal free energy Es of the dot of size s. In many previous
studies on the size selection the free energy is based on ex-
pression suggested by Tersoff and Tromp [24], which takes
into account the effects of the elastic strain field around
the growing dot. However, there are situations where the
Tersoff-Tromp energetics is not successful, in particular in
case of metallic nanodots [6,9,25]. In case of metallic dots
the total “self-energy” of the dot can be represented as
a combination of power-law type of terms of the form sα

(with α > 0), and in addition to these, contributions from
dot-dot interactions and possibly also from the Gibbs-
Thomson effect, which both can be included in an inverse
power-law term s−1/2 [24,26]. In what follows, we will use
a simpler, phenomenological form introduced by Gai et

al. [6], which is in agreement with theoretically more mo-
tivated but also more complicated expression suggested
by Liu [9]. This choice leads to free energy difference of
the form

∆s = w0 + c sα + a s−p. (4)

In the case of non-strained metallic dots, where self-
assembly and size selection are driven by coverage-
dependent dot-dot interactions, the first term describes
the “self-energy” of dots, including e.g. strain energy, in-
terface energy and step energy, while the latter term with
a = gθ2/3 describes the coverage-dependent dot-dot inter-
action with interaction strength g [6,9]. The parameter w0

is the constant part of self energy, which sets the minimum
value of the total free energy. In fact, with suitably chosen
set of parameters also the Tersoff-Tromp type energetics
for strain field driven self-assembly can be represented by
equation (4). It should be noted, that the energy differ-
ence ∆s describes the energy needed to remove or add one
atom to the dot of size s, and in the continuum limit it cor-
responds to the the chemical potential µ(s) = ∂E(s)/∂s
of dot of size s. Therefore, in the limit of very large is-
lands our description is consistent with the continuum de-
scription of the self-assembled growth process [14]. In the
following we do not explicitly discuss the effect of cover-
age on the self-assembly, but rather use equation (4) as a
convenient and flexible fitting formula for several possible
types of energetics of different physical origin. Neverthe-
less, we need to define the basic energy scale for the further
reference. Towards this end we note that the minimum en-
ergy ∆min should represent the energy needed to remove
one atom from the most stable configuration (i.e. energy
of at least one dangling bond), and for this energy values
in range 0.2–0.4 eV are appropriate [2,17,18]. In addition,
the temperature scale depends also on the choice of the
energy scale, because what matters is the dimensionless
value of β∆min. Therefore, it is convenient to make the
following scaling β → aβ, c → c/a and w0 → w0/a and
set a → 1 thus reducing the number of free parameters.
With this choice we mostly use parameterization where
minimum energy becomes ∆min = −0.25 eV, correspond-
ing size s0 = 5000 and temperatures in range 70 K–700 K
as mentioned in results given further on. Different energy
and temperature scales are obtained by different choice of
a so that T → aT and ∆min → a∆min.

2.3 Simulations

The rate equations (1) are solved by numerical simulation
of the time development of distributions by using the par-
ticle coalescence method (PCM) [19,27,28]. In the PCM,
the configuration space of dots is sampled, and the most
probable reactions are realized with weights given by the
rates. For the stochastic sampling, an efficient algorithm
is needed. The simplest and most efficient algorithm in
simulations of non-equilibrium systems like the current
one, is the rejection-free Bortz-Kalos-Lebowitz (BKL) al-
gorithm [29]. The use of BKL provides us with possibility
to obtain large amounts of data of good quality in very
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reasonable computing times. In the PCM it is assumed
that all dots can be treated as point-like objects, imply-
ing a low-coverage limit.

At every time step of simulation a dot process (attach-
ment, detachment or deposition if included) is picked up
according to pre-determined probability calculated from
the rates and the instantaneous dot distributions. In case
of deposition, an extra adatom is simply added. The prob-
abilities needed to choose processes are stored in a binary
tree to fasten the searches and updates of new, changed
probabilities during simulations. In order to keep track of
the time, the length of time step is calculated from the
total rate of events. A more detailed description of the
method and of its implantation are given in our previous
work [19].

3 Results

The results of the PCM simulations demonstrate the ex-
istence of the three phenomenologically different growth
stages of nanodots: (1) the initial stage during deposition,
with high density of small dots (singular growth), and af-
ter the deposition is interrupted; (2) intermediate stage of
short-lived stationary growth, which occurs at the mini-
mum of detachment rate and is strongly ordinated by the
kinetics of the growth; and (3) final long-lived stationary
state mostly governed by energetics of the growth, but
displaying a significant overshooting effect due to the ki-
netics. The results discussed here illustrate the generic be-
haviour of systems, where metastable kinetic states with
stationary size distributions occur. The simulations with
different parameters for energetics do not correspond any
specific real system, although by suitable choice of param-
eters different real systems can be modelled.

3.1 Initial evolution of the singular distributions

The initial distribution of the nanodots is prepared by
deposition of adatoms, and therefore the initial evolu-
tion of the size distribution is governed by the deposi-
tion flux and the reaction rates, which have essentially
only the size dependence of the type sq, as is shown Fig-
ure 1. In the absence of the size-dependent energetics of
the detachment rates, the growth is a kinetically deter-
mined reversible growth process, and we may expect that
the size distributions in this regime have a scaling form
ns(θ) = θ〈s〉−2f(s/s̄), where x = s/〈s〉, 〈s〉 is the average
dot size, and f(x) is the scaling function (for details, see
Refs. [19,30]). At high temperatures, the size dependent
energetics modifies the behaviour in this region, but at
low enough temperature region the evolution of the scal-
ing form of the size distribution of the small islands is ex-
pected. The behaviour of 〈s〉 and the total nanodot density
N =

∑
ns are shown in Figure 2, and the scaled dot size

distribution in Figure 3. From these results it is seen that
the average size and total density of dots have close resem-
blance to the power-law type dynamic scaling laws, but
the region where this kind of scaling occurs is too limited
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Fig. 1. The detachment rates γs as a function of dot size
s/s0 at three different temperatures β−1 = 0.03, 0.05 and 0.07,
corresponding to T = 350, 580 and 810 K. Parameters defining
the energetics are c = 0.0002 and α = 0.5. The minimum
values of rates are at sizes 0.15s0 , 0.06s0 and 0.03s0, where
s0 = 5000. In the inset is the free energy difference ∆s which
has a minimum at s0.
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Fig. 2. The average size 〈s〉/s0 and the total dot density N/N0

as a function of scaled time t/t0 in the initial stages of growth
with q = 1/2. Note that in this figure the parameters s0 ≈
1350, t0 ≈ 10 at T = 70 K and s0 ≈ 4090, t0 ≈ 160 at T = 46 K
(other parameters are c = 0.0002 and α = 1/2). The errors are
within the width of lines.

for the accurate determination of the scaling exponents.
The size distribution of the dots also has inverse power-law
singularity at small sizes, which is apparently determined
by the value of the model parameter q. These results can
be understood simply as the initial evolution stage of the
strongly reversible growth region. This region of growth is
discussed in Appendix B in terms of Becker-Döring model,
and it is shown that in the continuum limit the evolu-
tion of the size distribution is described by the non-linear
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Fig. 3. The scaled initial singular distribution f(x)/f(1) as
a function of size x = s/〈s〉. Figure contains data sets with
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c = 0.0002 and α = 1/2). The inset shows the reversible growth
results from longer simulations. The error bars are smaller than
the symbol sizes.

diffusion equation, which has a solution n(s, θ) ∝ s−q.
For a better comparison of these results, simulation re-
sults of an idealized situation of reversible growth with
σs = γs = sq and in regular region with n1 = κ are shown
in the inset in Figure 3 for q = 0, 1/2 and 1. These results
show the initial distributions obtained by the deposition
are strongly singular ones, where the singularity s−q at
small sizes is determined by the size-dependent reaction
kinetic factors of the form sq. However, with increasing
temperature the form of the distribution becomes less reg-
ular, although the peaked shape is still retained at high
temperatures.

3.2 Intermediate stage of growth determined
by reaction kinetics

The attachment and detachment rates have a power-law
sq-behaviour at small sizes up to a certain critical size
scrit defined by a temperature-dependent local maximum
of the detachment rate (see Fig. 1). In the simulations,
deposition is interrupted after the critical size is reached
and the growth proceeds as driven by the reaction kinet-
ics alone. The size distribution then begins to change to
a propagating Gaussian distribution, as is shown in Fig-
ure 4. At the same time, the singularity of small dots starts
to disappear. During the further evolution, the singular-
ity disappears altogether, and at high enough tempera-
tures the evolution proceeds towards the minimum of the
free energy. However, at temperatures low enough with
respect to the energetics, the Gaussian-shaped distribu-
tion attains a temporary stationary state before the free
energy minimum. This stationary location of the distribu-
tion corresponds the minimum of reaction rates shown in
Figure 1, and is thus not the stationary state observed typ-
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Fig. 4. The size distribution ns as a function of size s/s0 in
the intermediate stationary stage of growth. The stationary
state is determined by the minimum of the detachment rate,
which occurs with current parameters at 0.27s0. Note the dif-
ference compared to the minimum s0 = 5000 of energy function
∆s in equation (4) (see inset of Fig. 1). The distributions are
taken at times 20, 600, 2000, 3200 and 10 000 in arbitrary units
and multiplied for clarity with the factors 1, 500, 500, 1000 and
1100, respectively. Temperature is 70 K, and other parameters
are α = q = 0.5, κ = 10−7, c = 0.0002, σ0 ≈ 30, and t0 ≈ 10.

ically in the long lived final metastable state. Moreover,
the stationary state is now only a short-lived intermediate
state, and it is determined by the model parameters, in
particular by the value of w0 which defines the depth of
the detachment rate well. In this intermediate stationary
stage, growth is determined essentially by the reaction ki-
netics. Although this stage is probably not easily detected
by experiments, the model results suggest that it may be a
typical intermediate stage of the evolution at low enough
temperatures in case of 2D nanocluster growth.

The average size of the nanodots (as well as the maxi-
mum of the size distribution) depends clearly on the am-
bient temperature of the growth. The temperature depen-
dence of the distribution shape is shown in Figure 5, and
the detailed temperature dependence of the average size is
shown in Figure 6. The temperature dependence is roughly
of inverse power-law type 〈s〉 ∝ (kBT )−k with values of
k given in Figure 6. This strong temperature dependence
can be traced back to the effect that the geometric factor
sq weights the Arrhenius-type reaction rates differently at
different temperatures, thus making the detachment rate
minimum shifting to larger sizes with decreasing tempera-
ture as shown in Figure 1. Therefore, from these results it
is evident that the geometric capture rates affects also the
properties of size distribution, as is expected if the sta-
tionary state is governed by growth kinetics in addition to
the microscopic energetics of atomistic processes.

In summary, the present results agree with the results
demonstrating the kinetically determined nature of the
observed stationary state [12]. It should be noted that
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the intermediate state is now obtained at quite low tem-
peratures. This situation is simply related to the chosen
parametrization, which is chosen to give the final station-
ary state at size region comparable to 2000–5000 atoms.
With different parametrization, the temperature region
may well be at considerably higher energies, but the then
the final stationary stage of growth would occur at size re-
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Fig. 7. The time development of size distributions ns as a
function of size s/s0. The distributions are shown at times
2.0×10−5, 8.0×103 , 1.0×105 , 6.0×105 , 1.2×106 and 1.0×108

in arbitrary units, with κ = 10−7 and temperature 350 K.
For clarity: the distributions are multiplied with the factors 1,
2 × 104, 1 × 105, 4 × 105, 6 × 105, and 1 × 106, respectively.
The initial singular distribution is marked with dashed line. In
the inset are shown the average dot size 〈s〉/s0 (solid line), and
the standard deviation of the distribution σ/σ0 (dashed line)
as a function of time t/t0. The size corresponding the energy
minimum is s0 = 5000 and σ0 ≈ 350 is the analytical estimate
for the stationary width (see Appendix B).

gion of 20 000–50000 atoms, still feasible for our computa-
tional method but considerably slower. Also from compu-
tational aspect, it should be noted, that this intermediate
stationary state may be quite long-lived in practice. The
energetics parameter w0 affects the lifetime of state by
changing the depth of detachment rate minimum. Nev-
ertheless, when the simulations are continued beyond the
detachment minimum, the growth eventually starts again.
In order to access the late stages of evolution it is essential
to use the event-driven simulation methods like the BKL
algorithm used in present work.

3.3 Final stage of growth determined by energetics

When the growth continues beyond the kinetically de-
termined stationary stage, the size-dependence of attach-
ment rate begins to drive the growth again. The time de-
velopment of the size distribution is shown in Figure 7.
During this stage of growth, the size distribution begins
to broaden rapidly. The front part of the distribution is
Gaussian and propagates rapidly to larger sizes, while the
trailing edge of the distribution is left behind and con-
tains a large number of smaller dots. Consequently, dis-
tributions are skewed towards the small dot sizes. Finally,
the width of distribution starts to diminish again and the
distribution attains a closely Gaussian shape and becomes
stationary. This stage of growth, where stationary state is
approached, is extremely slow in comparison to initial and
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intermediate stages of growth, as can be seen from the in-
set shown in Figure 7. The location of the stationary size
does not depend on the temperature, but the width of the
distribution is temperature dependent [4,14]. Therefore,
in order to make better contact with previously discussed
situations and experimental conditions where size selec-
tion is observed, we now discuss the results in temperature
region which is higher than in the initial and intermediate
cases.

In the final stationary state the average size (or the
maximum of the distribution) is larger than the dot size
s0, which is the size for the minimum of free energy dif-
ference. The stationary size exceeds the value s0 about a
factor 1.3 in all cases studied here. This phenomenon of
overshooting is determined by the balance of the distribu-
tion and the positive free energy gradient. Overshooting
is clearly related to the kinetics of growth and is of similar
origin as the kinetic overshooting effect studied by Jesson
et al. [14]. As discussed in Appendix B, this condition is
satisfied when the macroscopic mass current is J = 0 in
the Fokker-Planck model describing the growth. This gen-
erally occurs only after the maximum of the distribution
has passed over the minimum s0 of the free energy differ-
ence (or in continuum model, the minimum of chemical
potential). When this happens, the distribution begins to
become narrower. The size distribution at the metastable
state resembles in high degree the Gaussian distribution,
but there are some differences. In order to quantify these
differences we have calculated the variance of the distri-
bution σ2 = [

∑
s(s − 〈s〉)2ns)]/N and the suitably nor-

malized third moment of the distribution, the skewness
µ = [

∑
s((s − 〈s〉)3ns)]/[Nσ3] where N =

∑
s ns.

The behaviour of the variance and skewness are shown
in Figure 8. As is seen, the width changes in interesting
way during growth, finally attaining a stationary value
but first overshooting this stationary value by a factor
of about 3–4. Similarly, the skewness of the distribution is
first negative, signaling significant skewness towards small
dots, but when the final long-lived stationary stage of
growth is reached, it attains a small negative value. From
the continuum approximation in Appendix B it is clear
that the Gaussian distribution in stationary state needs
to be slightly skewed. This originates from fulfilling the
condition J = 0 at the size region where the free energy
difference ∆s has a positive gradient, in which case the
distribution must have a compensating reduction in gra-
dients.

Size selection observed in this final stage of growth is
very general and generic process; it is produced with sim-
ilar properties at least within values κ = 10−1 to 10−8 if
the product κtmax is kept constant (here tmax is the max-
imum simulation time). Similarly, the changes in param-
eters defining the shape of the free energy of the system
does not affect the basic qualitative features of the onset
of the stationary state or the properties of the distribu-
tion. Of course, the absolute values of sizes where station-
ary state occurs do change, but the relative amount of the
overshooting is always about 1.2–1.5 with different param-
eter combinations. For given values of q the skewness |µ|c
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Fig. 8. The stationary size distribution ns at the final
metastable state (t = 1.0 × 108, κ = 1.0 × 10−7, c = 0.0002,
α = 0.5 and temperature is 350 K). PCM simulations (dots)
compared with the Gaussian distribution (solid line) calculated
from the average size and the variance of data. Note the skew-
ness of distribution compared to the Gaussian. Upper inset
shows the time development of the standard deviation σ/σ0.
In the lower inset is the skewness µ of the size distribution as
a function of time t/t0. Parameters are s0 = 5000, σ0 ≈ 350,
and t0 ≈ 1.7 × 103.

in the stationary state does not depend much on the choice
of the other parameters and e.g. for q = 1/2 in the range
2.0 × 10−4 < c < 2.0 × 10−3 we found |µ|c = 0.25–0.33,
while for q = 1/4 values |µ|c = 0.5–0.8 are obtained.

The skewness is connected to the effective driving force
which causes the distribution to overshoot the value s0.
This can be seen in Figure 9, where the effective drift
velocity ds/dt of the distribution peak is compared with
the time evolution of skewness, and where the drift ve-
locity is correlated with skewness at each instant of time
in the region of growth where overshooting occurs. As is
shown in Appendix B, the scaled, dimensionless drift ve-
locity |µ̄| = d(s/s0)/d(t/t0) at the position of maximum
skewness, occurring in the vicinity of s0, is estimated to be
|µ̄| = (σmax/s0) |µ|max, where σmax and |µ|max are max-
imum values of distribution variance and skewness near
s0. In the cases studied here, this estimate predicts val-
ues of order |µ̄| ≈ 0.15–0.20 which are in agreement with
results shown in Figure 9. Moreover, it is possible to esti-
mate the effect of the skewness on the magnitude of the
overshooting within the Gaussian approximation (see Ap-
pendix B), and conclude that the final stationary size is
sc ≈ (1 + |µ̄|)s0. This estimate based on the Gaussian ap-
proximation is in concordance with the PCM simulation
results, which give sc ≈ 1.2s0 in cases where |µ̄| ≈ 0.15
and sc ≈ 1.3s0 when |µ̄| ≈ 0.20. Similar variation between
increasing overshooting with larger values of |µ̄| are ob-
tained in other cases.

The ambient temperature has mostly effect on the
width of the distribution, as is shown in more detail in
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time dependences of the drift velocity and skewness (dotted,
with solid line as fit) are shown in the inset. The distribution
passes the minimum of free energy difference s0 approximately
at t/t0 = 1.2 × 103.

Figure 10. The distribution broadens with the increas-
ing temperature so that σ ∝ kBT , which is the re-
lation predicted by the continuum approximation given
in Appendix B [2,14]. However, also the average size in
stationary state is affected by the temperature, but this
is quite a moderate effect. In addition, the geometric
attachment rate factor sq affects the broadening, larger ex-
ponents q corresponding weaker temperature dependence
as shown in Figure 10. The overall behaviour of the dis-
tributions is thus mainly determined by the energetics of
the growth, but also affected by the kinetics. The results
of PCM simulations, taken together with the fact that the
distributions are Gaussian, confirms the prediction in ref-
erence [14] that due to interplay between energetics and
kinetics of growth, a long-lived stationary or metastable
state occurs.

4 Conclusions

We have discussed the the size selection of nanodots dur-
ing their growth within the framework of reaction kinetic
model. The theoretical formulation of the problem is based
on the self-consistent reaction rates, where size dependent
energetics is taken into account. The resulting model equa-
tions for the nanodot growth are solved by particle coa-
lescence simulation method. The results show that during
the growth there are three distinct stages of stationary
growth and size selection. First, the initial stage of growth
with anomalously high density of small dots, which can
be described by simple continuum model with singular
solutions. Second, there is a kinetically determined sta-
tionary stage of growth, which can be obtained if depo-
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Fig. 10. The temperature dependence of the distribution peak
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σ/σ0 (dashed line). In the case shown, s0 = 5000, σ0 ≈ 350,
and other parameters are as in Figure 8. The errors are smaller
than symbols.

sition is interrupted just after reaching the critical dot-
size which defines the local maximum of the detachment
rate. In this stage of the growth, the average size de-
pends strongly on the temperature, the increasing tem-
perature shifting distributions towards the smaller sizes.
These regions of growth can be probably observed only at
low enough growth temperatures. Third, there is a long-
lived stationary state corresponding the minimum of the
free energy difference (or chemical potential), and in this
region selection of size occurs. In this stage of growth,
kinetics still affects the growth by acting as an effective
drift towards larger sizes, ultimately balanced by positive
gradient of free energy difference (or chemical potential).
Together these effects cause the peak position to over-
shoot the minimum and produce the small but essential
skewness of size distributions in the stationary state. In
this final stage, the width of the distribution is at the
minimum, and is proportional to the temperature. The
results suggest, that the final and long-lived stationary
stage can be described with simple continuum models and
with Gaussian solutions. However, the another kinetically
determined precursor of short-lived stationary state with
more complex properties does not seem to yield such sim-
plified description. For further theoretical work the com-
plete continuum description covering all the stages of the
growth provides a challenging task.

This work has been supported by the the Academy of Finland
through grant SA 1210516, the EU-project MagDot 661016 and
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Appendix A

The problem of defining the reaction rates for attachment
and detachment for reversible nucleation and growth in
epitaxial growth has been discussed within the frame-
work of the self-consistent rate theory by Bales and
Zangwill [23]. The basic question is how to take into
account the effect of additional barriers for attachment (or
alternatively, lowered barrier for detachment) of adatoms
on the edges of the 2D-clusters. Basically, the additional
barrier modifies the adatom density on the dot edge, and
these modifications caused by the reversible nature of
growth must be taken onto account on the reaction rates
themselves. In the approach suggested by Bales and Zang-
will the adatom density around the dot is solved by us-
ing the boundary condition on the dot edge which takes
into account that: (1) the rate of detachment ωs from the
edge of the cluster of size s is different from the rate γs at
which the adatoms can escape to the surrounding medium
consisting of adatoms; (2) the effective rate γs depends
on the concentration of adatoms on the cluster edge, and
in equilibrium this concentration is increased by detach-
ment, and thus related to the additional barrier ∆s for at-
tachment (or lowered barrier for detachment). This situa-
tion requires that the rates of attachment and detachment
are calculated self consistently, so that “bare” detachment
rate ωs from cluster edge with radius Rs is modified by the
re-adsorption effect. In the model by Bales and Zangwill,
the re-adsorption is assumed to be possible through sev-
eral pathways ms, which for large clusters is ms → 2πRs

(in what follows, we use units scaled with lattice constant
a, so that in comparison to Bales and Zangwill we have
always a = 1). The self consistent scheme leads to the
result that attachment rate (capture rate) σs and the cor-
responding detachment rate γs = 1/τs, where τs is es-
cape time, can be chosen to be (see Eqs. (18) and (19) in
Ref. [23])

σs =
2πRsK1(Rs/ξ)

β−1
s K1(Rs/ξ) + ξK0(Rs/ξ)

(A.1)

γs =
ωsσs−1

ms−1e−∆s−1/kBT
(A.2)

where β−1
s = (2πRs/ms)e∆s/KBT − 1, and K0 and K1

are modified Bessel functions of the second kind of or-
der 0 and 1, respectively. In this form, all effects of de-
tachment are taken into account and rate γs becomes now
the effective rate at which detached adatoms escape into
the medium consisting of adatoms (effective medium) on
which the clusters are embedded [23]. In these equations,
the parameter ξ (for definition, see Ref. [23] Eq. (6) and
Ref. [30] Eq. (13)) is the correlation length, i.e. the aver-
age length the adatom travels before being captured by a
cluster edge. It should be noted, that in our point-like dot
model based on the RKM this correlation length is a free
parameter, defining the density of the system.

The detailed forms of the self-consistent rates are still
too complicated and detailed for our purposes. In or-
der to simplify the reaction rates further we assume that

2πRs/ms = 1, and that ξK0(x)/K1(x) = 1. Of these as-
sumptions, the latter is more restrictive, and it confines
the approximation to be used in region where radius of
dots is small in comparison to correlation length and cor-
relation length is in principle large. This is consistent with
assumptions of the point-like dot model behind RKM, al-
though it should be noted that in point-like dot model it
can not be defined unambiguously. In practice, the choice
of ξ and ratio K0(x)/K1(x) does not affect in any signif-
icant way the evolution of the system, because it mostly
defines the saddle point of rates seen in Figure 1 (related
to the size of islands up to which initial, singular evolu-
tion continues), but its effect on the exact location of the
saddle point is quite moderate. In addition, the “bare” de-
tachment rate is taken to be a simple power-law ωs = sq.
With these simplifications we obtain

σs = sq/(1 + eβ∆s);

γs = sq/(1 + e−β∆s−1), (A.3)

which are mathematically simple enough but still retain
the essential physics for our purpose of exploring the qual-
itative and generic features of the RKM model.

Appendix B

The reaction kinetic model (RKM) defined by equa-
tions (1–4) can be simplified further for analytical calcula-
tions. The first step is deriving the discrete Becker-Döring
model (BDM) from the RKM, and then from the BDM a
generalized Fokker-Planck model (FPM), which is a con-
tinuum model for growth.

B.1 The Becker-Döring model

The basic physical assumptions behind the RKM are the
assumptions of steady diffusion, total mass conservation
and isolated dots in a dilute system, and these are simi-
larly the starting point for classical derivations of Becker-
Döring model (see Ref. [31] and references therein). In
order to see how RKM defined by REs in equation (1)
are related to the BDM we first note that the regular
growth takes place when dn1/dt → 0 and this requires
that n1 → κ. Second, by using the value n1 = κ and
redefining n1 → n1/κ equation (1) is simplified to the
Becker-Döring model defined by equations [31]

dns

dt
= σs−1ns−1 − (σs + γs)ns + γs+1ns+1

+ η(σsns − γs−1ns−1), (B.1)

where the parameter η = n1−1 is a measure for deviation
of the adatom density. In what follows, we assume that
growth is completely regular (i.e. n1 = κ), when η = 0.
This assumption is consistent with the growth condition
corresponding either the existence of a wetting layer, the
super-saturation of adatoms [5] or enhanced detachment
of adatoms from cluster edges [17,18]. In what follows, we
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assume a constant pre-deposited coverage θ, and that the
adatom density is supersaturated (or that a wetting layer
exists), justifying the condition η = 0.

B.2 The Fokker-Planck model

The Becker-Döring model in equation (B.1) describes the
growth in atomistic level through reaction rates [31]. The
corresponding continuum equation for evolution of the size
distribution n(x, t) for size x treated as a continuous vari-
able can be derived by performing the Kramers-Moyal ex-
pansion [32] of the Becker-Döring model. This expansion
leads to Fokker-Planck model given by equations (com-
pare with [14])

∂n(x, t)
∂t

= − ∂

∂x
[J(x, t)], (B.2)

J(x, t) = v(x, t)n(x, t) − ∂

∂x
[D(x, t)n(x, t)], (B.3)

where J(x, t) is the flux in configurational space of dot
sizes. The time and size dependent drift and diffusion co-
efficients are given by

v(x, t) = xq tanh
[

∆(x)
2kBT

]
, (B.4)

D(x, t) =
1
2
xq. (B.5)

In deriving equation (B.5) we have made the assumption
that ξK0(x)/K1(x) = 1 (see Appendix A, from Eqs. (A.2)
to (A.3)). This assumption does not affect the evolution
of the system in the region x > 0.2x0 where the curva-
ture of ∆(x) near its minimum x0 dominates the growth.
In addition, we approximate tanh[∆/2kBT ] → ∆β/2, and
make the scaling t → t/2.

B.3 Initial evolution and singular distributions

The initial stage of growth or at temperatures where
β∆s � 1 the FPE can be approximated by neglecting
the drift term, in which case equation (B.2) reduces to

∂n(x, t)
∂t

=
∂2

∂x2 [xqn(x, t)]. (B.6)

This non-linear diffusion equation has solutions [33]

n(x, t) ∝ x−q exp
[
− x2−q

(2 − q)2t

]
, (B.7)

and with respect to the spatial scales it has a scaling prop-
erty x → x/tβ (for details, see from Eq. (1) to Eq. (10) in
Ref. [33]), where the dynamic exponent is given by

β = 1/(2 − q). (B.8)

The results of the PCM simulations shown in Figure 3
are in concordance with this kind of initial stage with the
size distribution having a characteristic singularity n(x) ∝
x−q at small values of x. However, in cases studied here
this growth stage is too short in order to show clearly the
dynamic scaling and scaling of singular distributions.

B.4 Stationary state and Gaussian distributions

The Fokker-Planck equations in equations (B.2, B.3) have
previously been used to describe the growth of nanodots in
stationary stage of growth by Jesson et al. [14]. In the re-
gion, where the minimum of the energy change ∆(x), or al-
ternatively in the continuum limit the minimum of chem-
ical potential, governs the growth of the nanodots it is
possible to obtain a long-lived stationary state of growth.
The numerical results in reference [14] show that the time
evolution of the size distribution is rather regular: the dis-
tribution is already from the beginning a Gaussian-shaped
and evolves steadily towards the metastable state, which is
long-lived. Already before this long-lived metastable state
is reached, the width of the size distribution begins to di-
minish until finally a stationary state is obtained and the
the average size remains the same. This behaviour sug-
gests that it is possible to find simple solutions to the
Fokker-Planck model describing the growth, and to use
such solutions in describing the effect of overshooting the
size corresponding the free energy minimum as well as the
narrowing of the distribution.

In the long-lived stationary (or metastable) region of
growth a reasonable assumption is that the distribution
is sufficiently narrow so that the energy difference ∆(x)
(or the chemical potential) can be linearized in the vicin-
ity of the size distribution maximum x̄, in which case
∆(x) ≈ ∆(x̄) + ∆′(x̄)(x − x̄) + (1/2)∆′′(x̄)(x − x̄)2. This
assumption, which greatly simplifies the description of
the growth problem, can be justified a posteriori (see
also [14]). However, now we must ensure the conserva-
tion of the mass and thus require that the total flux after
approximations satisfies

∫ ∞

0

J(x, t)dx = 0. (B.9)

This requires that an average energy change ∆̄ (a
Lagrange multiplier) to take care of the mass conserva-
tion is introduced so that the drift velocity is given by

v(x̄, t) = βD(x)[∆̄ − ∆(x)] − βD(x)∆′(x)[x̄ − x], (B.10)

where the diffusion coefficient is D(x) = xq, and ∆̄ de-
pends only on time through the condition in equa-
tion (B.9). We assume that the size distribution is sharply
enough peaked around x = x̄ to allow the approximation
D(x) = D(x̄), ∆(x) = ∆(x̄) and ∆′(x) = ∆′(x̄) through-
out all further calculations (in what follows, the argument
x̄ is dropped out from these coefficients). In this case the
simplified FPM has a drift velocity which depends linearly
on the position x but the terms D, ∆ and ∆′ depend only
on time through the time dependence of the size x̄.

The FPM defined by equations (B.2, B.3) and equa-
tion (B.10) is now reduced to the Fokker-Planck model
with time dependent diffusion and linearized drift. This
kind of FPM can be solved by a Gaussian-distribution

nG(x, t) =
1√

2πσ2
exp

[
− (x − x̄)2

2σ2

]
, (B.11)
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with the time-dependent peak position x̄ = x̄(t) and the
distribution width (standard deviation) σ = σ(t) [34,35].
In principle, the integral transforms for calculating x̄ and
σ are given e.g. in references [34,35], but now it is more
convenient to use the differential equations defining the
average size x̄ and the standard deviation w = σ2 of the
distribution:

dx̄

dt
= βD(∆̄ − ∆) − βD∆′(x̄ − x0), (B.12)

dw

dt
= 2D − 2β D ∆′w. (B.13)

The major complication with equations (B.12, B.13) arises
from the notion that ∆̄ is time dependent. However, as a
first approximation we note that difference ∆̄−∆ can be
interpreted as an effective drift. In the vicinity of x̄ = x0

only this part of the effective drift affects the time develop-
ment of the peak position as is seen from equation (B.12).
Moreover, as is shown in Figure 9, the PCM simulations
show that for x > x0 there is a correlated decrease of skew-
ness and the drift velocity. This dependence suggests that
on the average the effective constant drift ∆̄ − ∆ can be
related to the skewness µ of the distribution. Within the
simplified model it is not possible to make this relationship
entirely quantitative, but it is possible to approximately
relate ∆̄ − ∆ to the skewness µ by deriving the time rate
of change of the third moment of the distribution and as-
suming then its stationarity. For values of x close to the
stationary size xc > x0 we obtain then an estimate

∆̄ − ∆ ≈ |µ|max 〈σ/x0〉max ∆′ x0. (B.14)

Therefore, after the distribution has passed the position
x0 the drift speed is dx̄/dt = v0|µ̄|, where v0 = x0/t0
with a timescale factor t0 = [βD(x0)∆′(xc)]−1. Defining
|µ̄| = |µ|max 〈σ/x0〉max and taking into account that PCM
simulations give values 1.5 < |µ|max < 2.0 and 0.2 <
〈σ/x0〉max < 0.3 we obtain 0.2 < |µ̄| < 0.3 for q = 1/2
and 0.3 < |µ̄| < 0.5 for q = 1/4. These estimates are
in agreement with drift velocities inferred from the PCM
data, which for q = 1/2 and 1/4 (for a range of other
parameters) give (dx̄/dt)/v0 ≈ 0.16–0.20 and 0.25–0.30,
respectively.

The final simplification occurs when the result in equa-
tion (B.14) is substituted in equations (B.12, B.13). We
define the scaled variables as τ = t/t0, ζ = x̄/x0, and
scaled functions as ω = σ2/σ2

c and ∆̃′(ζ) = ∆′(x)/∆′(xc),
where σ2

c = 1/(β∆′(xc)) is the width at the stationary
position xc. With these redefinitions we obtain

ζ̇ = (1 + |µ̄|) − ζ, (B.15)

ω̇ = 2 − 2∆̃′(ζ) ω. (B.16)

Within the present model, we do not have access to cal-
culate the values of the parameter |µ̄|, which need to be
obtained from simulations. In most cases 0.2 < |µ̄| < 0.5
can be used as rough estimates. The quantitative accuracy
of the simplified model can not be improved further, but
these estimates are enough to demonstrate the origin of
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Figure 7.

the overshooting effect. The time evolution of the scaled
average size ζ and width ω is now calculated easily from
equations (B.15) and (B.16). The only complication is that
∆̃′(ζ) is singular at small values of ζ. However, in this re-
gion our basic linearization assumption fails, and without
any additional loss of reliability ∆̃′(ζ) can be replaced by
suitably smooth approximating function at values ζ < 0.5.
This only affects the behaviour of ω at the region where
it reached maximum. Some results for different choices
of model parameters are shown in Figure 11, where the
typical behaviour comparable to behaviour seen in PCM
calculations (see the inset in Fig. 7) is demonstrated.

From these results, it can be seen that the stationary
values are simply obtained as ζc = 1 + |µ̄| and ωc = 1,
corresponding the stationary average size xc and width σc

given by

xc = (1 + |µ̄|) x0, (B.17)

σc = 1/
√

β∆′(xc). (B.18)

Therefore, xc overshoots x0 by a fraction depending of
|µ̄|, as well as the width of the distribution increases up to
s0 after it starts to decrease rapidly towards the station-
ary value determined by σc = 1/

√
β∆′

c. These predictions
compare well with the results of PCM simulations. In addi-
tion, the behaviour of distribution based on the linearized
form of free energy in the vicinity of the average size is
in agreement with the results in reference [14], where lin-
earization is not done. However, the fact that also in their
case Gaussian distributions are obtained strongly suggests
that distributions are narrow enough to justify the lin-
earization. This notion is also supported by the results
of our RKM model. Given the simplicity of the scheme
proposed here and the agreement with results based on
the RKM and the direct numerical solution of the Fokker-
Planck model, the sacrifice of accuracy due to the lin-
earization of drift appears to be tolerable.
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Sveshnikov, Z. Kož́ı̌sek, Europhys. Lett. 50, 278 (2000)


